Astrape: A System for Mapping Severe Abiotic Forest Disturbances Using High Spatial Resolution Satellite Imagery and Unsupervised Classification

Author:

Wegmueller Sarah A.,Townsend Philip A.ORCID

Abstract

Severe forest disturbance events are becoming more common due to climate change and many forest managers rely heavily upon airborne surveys to map damage. However, when the damage is extensive, airborne assets are in high demand and it can take managers several weeks to account for the damage, delaying important management actions. While some satellite-based systems exist to help with this process, their spatial resolution or latency can be too large for the needs of managers, as evidenced by the continued use of airborne imaging. Here, we present a new, operational-focused system capable of leveraging high spatial and temporal resolution Sentinel-2 and Planet Dove imagery to support the mapping process. This system, which we have named Astrape (“ah-STRAH-pee”), uses recently developed techniques in image segmentation and machine learning to produce maps of damage in different forest types and regions without requiring ground data, greatly reducing the need for potentially dangerous airborne surveys and ground sampling needed to accurately quantify severe damage. Although some limited field work is required to verify results, similar to current operational systems, Astrape-produced maps achieved 78–86% accuracy with respect to damage severity when evaluated against reference data. We present the Astrape framework and demonstrate its flexibility and potential with four case studies depicting four different disturbance types—fire, hurricane, derecho and tornado—in three disparate regions of the United States. Astrape is capable of leveraging various sources of satellite imagery and offers an efficient, flexible and economical option for mapping severe damage in forests.

Funder

U.S. Forest Service

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3