Monitoring Forest Cover Dynamics Using Orthophotos and Satellite Imagery

Author:

Blaga Lucian1,Ilieș Dorina Camelia1,Wendt Jan A.2ORCID,Rus Ioan3,Zhu Kai4ORCID,Dávid Lóránt Dénes56ORCID

Affiliation:

1. Department of Geography, Tourism and Territorial Planning, Faculty of Geography, Tourism and Sport, The Territorial Studies and Analyses Centre (CSAT), University of Oradea, 410087 Oradea, Romania

2. Institute of Socio-Economic Geography and Spatial Management, University of Gdansk, 80309 Gdansk, Poland

3. Faculty of Geography, Babes-Bolyai University, 400006 Cluj-Napoca, Romania

4. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China

5. Faculty of Economics and Business, John von Neumann University, 6000 Kecskemet, Hungary

6. Institute of Rural Development and Sustainable Economy, Hungarian University of Agriculture and Life Sciences, 2100 Godollo, Hungary

Abstract

The assessment of changes in forest coverage is crucial for managing protected forest areas, particularly in the face of climate change. This study monitored forest cover dynamics in a 6535 ha mountain area located in north-west Romania as part of the Apuseni Natural Park from 2003 to 2019. Two approaches were used: vectorization from orthophotos and Google Earth images (in 2003, 2005, 2009, 2012, 2014, 2016, 2017, and 2019) and satellite imagery (Landsat 5 TM, 7 ETM, and 8 OLI) pre-processed to Surface Reflectance (SR) format from the same years. We employed four standard classifiers: Support Vector Machine (SVM), Random Forest (RF), Maximum Likelihood Classification (MLC), Spectral Angle Mapper (SAM), and three combined methods: Linear Spectral Unmixing (LSU) with Natural Breaks (NB), Otsu Method (OM) and SVM, to extract and classify forest areas. Our study had two objectives: 1) to accurately assess changes in forest cover over a 17-year period and 2) to determine the most efficient methods for extracting and classifying forest areas. We validated the results using performance metrics that quantify both thematic and spatial accuracy. Our results indicate a 9% loss of forest cover in the study area, representing 577 ha with an average decrease ratio of 33.9 ha/year−1. Of all the methods used, SVM produced the best results (with an average score of 88% for Overall Quality (OQ)), followed by RF (with a mean value of 86% for OQ).

Funder

University of Oradea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3