Data-Driven Approaches for Tornado Damage Estimation with Unpiloted Aerial Systems

Author:

Chen ZhiangORCID,Wagner Melissa,Das Jnaneshwar,Doe Robert K.,Cerveny Randall S.

Abstract

Tornado damage estimation is important for providing insights into tornado studies and assisting rapid disaster response. However, it is challenging to precisely estimate tornado damage because of the large volumes of perishable data. This study presents data-driven approaches to tornado damage estimation using imagery collected from Unpiloted Aerial Systems (UASs) following the 26 June 2018 Eureka Kansas tornado. High-resolution orthomosaics were generated from Structure from Motion (SfM). We applied deep neural networks (DNNs) on the orthomosaics to estimate tornado damage and assessed their performance in four scenarios: (1) object detection with binary categories, (2) object detection with multiple categories, (3) image classification with binary categories, and (4) image classification with multiple categories. Additionally, two types of tornado damage heatmaps were generated. By directly stitching the resulting image tiles from the DNN inference, we produced the first type of tornado damage heatmaps where damage estimates are accurately georeferenced. We also presented a Gaussian process (GP) regression model to build the second type of tornado damage heatmap (a spatially continuous tornado damage heatmap) by merging the first type of object detection and image classification heatmaps. The GP regression results were assessed with ground-truth annotations and National Weather Service (NWS) ground surveys. This detailed information can help NWS Weather Forecast Offices and emergency managers with their damage assessments and better inform disaster response and recovery.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3