Quantifying and analysing rock trait distributions of rocky fault scarps using deep learning

Author:

Chen Zhiang1ORCID,Scott Chelsea1,Keating Devin1,Clarke Amanda1,Das Jnaneshwar1,Arrowsmith Ramon1

Affiliation:

1. School of Earth and Space Exploration Arizona State University Tempe AZ USA

Abstract

AbstractWe apply a deep learning model to segment and identify rock characteristics based on a Structure‐from‐Motion orthomap and digital elevation model of a rocky fault scarp in the Volcanic Tablelands, Eastern California, USA. By post‐processing the deep learning results, we build a semantic rock map and analyse the rock trait distributions. The resulting semantic map contains nearly 230 000 rocks with effective diameters ranging from 2 to 250 cm. Rock trait distributions provide a new perspective on rocky fault scarp development and extend past research on scarp geometry including slope, height and length. Heatmaps indicate rock size spatial distributions on the fault scarp and surrounding topographic flats. Median grain size changes perpendicular to the fault scarp trace, with the largest rocks on the downslope proximal to the scarp footwall. Correlation analyses illustrate the relationship between rock trait statistics and fault scarp geomorphology. Local fault scarp height correlates with median grain size (  = 0.6), the mean grain size of the largest rocks (  = 0.8) and the ratio of the number of small to large rocks (  = 0.4). The positive correlation (  = 0.8) between local fault scarp height and standard deviation of grain size suggests that rocks on a higher fault scarp are less well sorted. The correlation analysis between fault scarp height and rock orientation statistics supports a particle transportation model in which locally higher fault scarps have relatively more rocks with long axes parallel to fault scarp trace because rocks have a larger distance to roll and orient the long axes. Our work demonstrates a data‐driven approach to geomorphology based on rock trait distributions, promising a greater understanding of fault scarp formation and tectonic activity, as well as many other applications for which granulometry is an indicator of process.

Funder

National Science Foundation

Southern California Earthquake Center

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3