GOSAT CH4 Vertical Profiles over the Indian Subcontinent: Effect of a Priori and Averaging Kernels for Climate Applications

Author:

Belikov Dmitry A.ORCID,Saitoh Naoko,Patra Prabir K.ORCID,Chandra Naveen

Abstract

We examined methane (CH4) variability over different regions of India and the surrounding oceans derived from thermal infrared (TIR) band observations (TIR CH4) by the Thermal and Near-infrared Sensor for carbon Observation—Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observation SATellite (GOSAT) for the period 2009–2014. This study attempts to understand the sensitivity of the vertical profile retrievals at different layers of the troposphere and lower stratosphere, on the basis of the averaging kernel (AK) functions and a priori assumptions, as applied to the simulated concentrations by the MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM). We stress that this is of particular importance when the satellite-derived products are analyzed using different ACTMs other than those used as retrieved a priori. A comparison of modeled and retrieved CH4 vertical profiles shows that the GOSAT/TANSO-FTS TIR instrument has sufficient sensitivity to provide critical information about the transport of CH4 from the top of the boundary layer to the upper troposphere. The mean mismatch between TIR CH4 and model is within 50 ppb, except for the altitude range above 150 hPa, where the sensitivity of TIR CH4 observations becomes very low. Convolved model profiles with TIR CH4 AK reduces the mismatch to less than the retrieval uncertainty. Distinct seasonal variations of CH4 have been observed near the atmospheric boundary layer (800 hPa), free troposphere (500 hPa), and upper troposphere (300 hPa) over the northern and southern regions of India, corresponding to the southwest monsoon (July–September) and post-monsoon (October–December) seasons. Analysis of the transport and emission contributions to CH4 suggests that the CH4 seasonal cycle over the Indian subcontinent is governed by both the heterogeneous distributions of surface emissions and the influence of the global monsoon divergent wind circulations. The major contrast between monsoon, and pre- and post-monsoon profiles of CH4 over Indian regions are noticed near the boundary layer heights, which is mainly caused by seasonal change in local emission strength with a peak during summer due to increased emissions from the paddy fields and wetlands. A strong difference between seasons in the middle and upper troposphere is caused by convective transport of the emission signals from the surface and redistribution in the monsoon anticyclone of upper troposphere. TIR CH4 observations provide additional information on CH4 in the region compared to what is known from in situ data and total-column (XCH4) measurements. Based on two emission sensitivity simulations compared to TIR CH4 observations, we suggest that the emissions of CH4 from the India region were 51.2 ± 4.6 Tg year−1 during the period 2009–2014. Our results suggest that improvements in the a priori profile shape in the upper troposphere and lower stratosphere (UT/LS) region would help better interpretation of CH4 cycling in the earth’s environment.

Funder

The Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3