The carbon budget of South Asia

Author:

Patra P. K.ORCID,Canadell J. G.ORCID,Houghton R. A.ORCID,Piao S. L.,Oh N.-H.,Ciais P.,Manjunath K. R.,Chhabra A.,Wang T.,Bhattacharya T.,Bousquet P.,Hartman J.ORCID,Ito A.ORCID,Mayorga E.,Niwa Y.,Raymond P. A.,Sarma V. V. S. S.,Lasco R.

Abstract

Abstract. The source and sinks of carbon dioxide (CO2) and methane (CH4) due to anthropogenic and natural biospheric activities were estimated for the South Asian region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka). Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO2 inversions, the net biospheric CO2 flux in South Asia (equivalent to the Net Biome Productivity, NBP) was a sink, estimated at −104 ± 150 Tg C yr−1 during 2007–2008. Based on the bottom-up approach, the net biospheric CO2 flux is estimated to be −191 ± 193 Tg C yr−1 during the period of 2000–2009. This last net flux results from the following flux components: (1) the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration) of −220 ± 186 Tg C yr−1 (2) the annual net carbon flux from land-use change of −14 ± 50 Tg C yr−1, which resulted from a sink of −16 Tg C yr−1 due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr−1 due to the expansion of croplands; (3) the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr−1; and (4) the net CO2 emission due to biomass burning of +44.1 ± 13.7 Tg C yr−1. Including the emissions from the combustion of fossil fuels of 444 Tg C yr−1 for the 2000s, we estimate a net CO2 land–atmosphere flux of 297 Tg C yr−1. In addition to CO2, a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH4. Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C yr−1 were released to atmosphere from South Asia during the 2000s. Taking all CO2 and CH4 fluxes together, our best estimate of the net land–atmosphere CO2-equivalent flux is a net source of 334 Tg C yr−1 for the South Asian region during the 2000s. If CH4 emissions are weighted by radiative forcing of molecular CH4, the total CO2-equivalent flux increases to 1148 Tg C yr−1 suggesting there is great potential of reducing CH4 emissions for stabilizing greenhouse gases concentrations.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3