Abstract
The lake ice phenology variations are vital for the land–surface–water cycle. Qinghai Lake is experiencing amplified warming under climate change. Based on the MODIS imagery, the spatio-temporal dynamics of the ice phenology of Qinghai Lake were analyzed using machine learning during the 2000/2001 to 2019/2020 ice season, and cloud gap-filling procedures were applied to reconstruct the result. The results showed that the overall accuracy of the water–ice classification by random forest and cloud gap-filling procedures was 98.36% and 92.56%, respectively. The annual spatial distribution of the freeze-up and break-up dates ranged primarily from DOY 330 to 397 and from DOY 70 to 116. Meanwhile, the decrease rates of freeze-up duration (DFU), full ice cover duration (DFI), and ice cover duration (DI) were 0.37, 0.34, and 0.13 days/yr., respectively, and the duration was shortened by 7.4, 6.8, and 2.6 days over the past 20 years. The increased rate of break-up duration (DBU) was 0.58 days/yr. and the duration was lengthened by 11.6 days. Furthermore, the increase in temperature resulted in an increase in precipitation after two years; the increase in precipitation resulted in the increase in DBU and decrease in DFU in corresponding years, and decreased DI and DFI after one year.
Funder
the Strategic Priority Research Program of the Chinese Academy of Sciences “CAS Earth Big Data Science Project
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献