Evaporation and sublimation measurement and modeling of an alpine saline lake influenced by freeze–thaw on the Qinghai–Tibet Plateau

Author:

Shi Fangzhong,Li XiaoyanORCID,Zhao Shaojie,Ma Yujun,Wei Junqi,Liao Qiwen,Chen DeliangORCID

Abstract

Abstract. Saline lakes on the Qinghai–Tibet Plateau (QTP) affect the regional climate and water cycle through water loss (E, evaporation under ice-free conditions and sublimation under ice-covered conditions). Due to the observational difficulty over lakes, E and its underlying driving forces are seldom studied when targeting saline lakes on the QTP, particularly during ice-covered periods (ICP). In this study, the E of Qinghai Lake (QHL) and its influencing factors during ice-free periods (IFP) and ICP were first quantified based on 6 years of observations. Subsequently, three models were calibrated and compared in simulating E during the IFP and ICP from 2003 to 2017. The annual E sum of QHL is 768.58±28.73 mm, and the E sum during the ICP reaches 175.22±45.98 mm, accounting for 23 % of the annual E sum. E is mainly controlled by the wind speed, vapor pressure difference, and air pressure during the IFP but is driven by the net radiation, the difference between the air and lake surface temperatures, the wind speed, and the ice coverage during the ICP. The mass transfer model simulates lake E well during the IFP, and the model based on energy achieves a good simulation during the ICP. Moreover, wind speed weakening resulted in an 7.56 % decrease in E during the ICP of 2003–2017. Our results highlight the importance of E in ICP, provide new insights into saline lake E in alpine regions, and can be used as a reference to further improve hydrological models of alpine lakes.

Funder

National Natural Science Foundation of China

Dream Project of Ministry of Science and Technology of the People's Republic of China

State Key Laboratory of Earth Surface Processes and Resource Ecology

China Postdoctoral Science Foundation

Publisher

Copernicus GmbH

Reference79 articles.

1. Abdelrady, A. R.: Evaporation over fresh and saline water using SEBS, MS thesis, Faculty of Geo-Information Science and Earth Observation, University of Twente, Twente, 1–54, https://webapps.itc.utwente.nl/librarywww/papers_2013/msc/wrem/abdelrady.pdf (last access: 6 January 2024), 2013.

2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, 1–286, https://www.researchgate.net/publication/235704197 (last access: 6 January 2024), 1998.

3. Badawy, S. M.: Laboratory freezing desalination of seawater, Desalin. Water. Treat., 57, 11040–11047, https://doi.org/10.1080/19443994.2015.1041163, 2016.

4. Blanken, P. D., Den Hartog, G., Staebler, R. F., Chen, W. J., and Novak, M.: Turbulent flux measurements above and below the overstory of a boreal aspen forest, Bound.-Lay. Meteorol., 89, 109–140, https://doi.org/10.1023/A:1001557022310, 1998.

5. Blanken, P. D., Rouse, W. R., Culf, A. D., Spence, C., Boudreau, L. D., Jasper, J. N., Kochtubajda, B., Schertzer, W. M., Marsh, P., and Verseghy, D.: Eddy covariance measurements of evaporation from Great Slave lake, Northwest Territories, Canada, Water. Resour. Res., 36, 1069–1077, https://doi.org/10.1029/1999WR900338, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3