Weighted Information Models for the Quantitative Prediction and Evaluation of the Geothermal Anomaly Area in the Plateau: A Case Study of the Sichuan–Tibet Railway

Author:

Zhao WenboORCID,Dong Qing,Chen Zhe,Feng Tao,Wang Dong,Jiang Liangwen,Du Shihui,Zhang Xiaoyu,Meng DeliORCID,Bian Min,Chen Jianping

Abstract

The prediction of geothermal high-temperature anomalies along the plateau railway will be helpful in the construction of the project and its later management. Taking the Sichuan–Tibet railway as the study area and based on Landsat8 thermal infrared images, map data, and measured data regarding the cause and distribution of geothermal high-temperature anomalies, through correlation analysis, we selected six impact factors including the LST, combined entropy of geological formation, fault density, buffer distance to rivers, magnetic anomaly, and earthquake peak acceleration as the input maps of the model. The index-overlay information model, the weights of the entropy information model, and the weights of the evidence information model were established to quantitatively predict the geothermal anomaly in the study area, and the prediction maps were divided into four classes. The results show that the weights of the evidence information model achieved a high prediction accuracy; the success index and the ratio of the high anomaly area reached 0.0053% and 0.872, respectively, and the spatial distribution of the geothermal points is basically consistent with the prediction results. This research can act as a reference for the design and construction of the Sichuan–Tibet railway.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference62 articles.

1. Challenges and Countermeasures for Construction Safety during the Sichuan–Tibet Railway Project

2. Engineering Geological Research in Formations-structural features of the Sichuan-Tibet Railway Plate Collision Junction;Jiang,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3