Abstract
This paper focuses on the performance analysis, modeling, and control of permanent magnet synchronous generator (PMSG)-based wind energy conversion. This work analyzes controllers for the machine-side converter (MSC) and grid-side converter (GSC) and presents a new direct torque control (DTC) scheme based on a 12-sectors polygonal DTC for variable speed control of the PMSG. The proposed method solves the drawbacks faced by conventional six-sectors DTC control. The proposed method utilizes 12 sectors of 30° each compared to 60° in the conventional 6-sectors DTC. The 12-sectors technique was applied to voltages and flux vectors to increase the degrees of freedom for the selection of optimal vectors and, thus, reduce the torque ripple. This work analyzed the aforementioned DTC methods using MATLAB/Simulink, comparing the dynamic response of the proposed 12-sectors DTC with the conventional 6-sectors DTC control, and the results verified the effectiveness of the proposed DTC control.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献