Optimization of Friction Stir Spot Welding Process Using Bonding Criterion and Artificial Neural Network

Author:

Jo Deok Sang1,Kahhal Parviz123ORCID,Kim Ji Hoon1ORCID

Affiliation:

1. School of Mechanical Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

2. Hybrid Innovative Manufacturing & Engineering Center, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea

3. Department of Mechanical Engineering, Ayatollah Boroujerdi University, Boroujerd 69199-69737, Iran

Abstract

The objectives of this study were to analyze the bonding criteria for friction stir spot welding (FSSW) using a finite element analysis (FEA) and to determine the optimal process parameters using artificial neural networks. Pressure-time and pressure-time-flow criteria are the bonding criteria used to confirm the degree of bonding in solid-state bonding processes such as porthole die extrusion and roll bonding. The FEA of the FSSW process was performed with ABAQUS-3D Explicit, with the results applied to the bonding criteria. Additionally, the coupled Eulerian–Lagrangian method used for large deformations was applied to deal with severe mesh distortions. Of the two criteria, the pressure-time-flow criterion was found to be more suitable for the FSSW process. Using artificial neural networks with the bonding criteria results, process parameters were optimized for weld zone hardness and bonding strength. Among the three process parameters used, tool rotational speed was found to have the largest effect on bonding strength and hardness. Experimental results were obtained using the process parameters, and these results were compared to the predicted results and verified. The experimental value for bonding strength was 4.0 kN and the predicted value of 4.147 kN, resulting in an error of 3.675%. For hardness, the experimental value was 62 Hv, the predicted value was 60.018 Hv, and the error was 3.197%.

Funder

Materials/Parts Technology Development Program of Korea Evaluation Institute of Industrial Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3