Degradation of Chemical Components of Thermally Modified Robinia pseudoacacia L. Wood and Its Effect on the Change in Mechanical Properties

Author:

Sikora Adam,Hájková KateřinaORCID,Jurczyková Tereza

Abstract

Currently, emphasis is placed on using environmentally friendly materials both from a structural point of view and the application of protective means. For this reason, it is advisable to deal with the thermal modification of wood, which does not require the application of protective substances, to increase its service life. The main reason for the thermal modification of black locust is that although black locust grows abundantly in our country, it has no industrial use. It is mainly used outdoors, where thermal modification could increase its resistance. This article deals with the thermal modification of black locust wood (Robinia pseudoacacia L.) and the impact of this modification on the chemical components of the wood with an overlap in the change in mechanical properties compared to untreated wood. Static (LOP, MOR, and MOE) and dynamic (IBS) bending properties were evaluated as representative mechanical properties. At the same time, the impact of thermal modification on the representation of chemical components of wood (cellulose, lignin, hemicellulose) was also tested. As a result of the heat treatment, the mechanical properties gradually decreased as the temperature increased. The highest decrease in mechanical values found at 210 °C was 43.7% for LOP and 45.1% for MOR. Thermal modification caused a decrease in the content of wood polysaccharides (the decrease in hemicelluloses content was 33.2% and the drop in cellulose was about 29.9% in samples treated at 210 °C), but the relative amount of lignin in the wood subjected to increased temperature was higher due to autocondensation, and mainly because of polysaccharide loss. Based on the correlations between chemical and mechanical changes caused by thermal modification, it is possible to observe the effects of reducing the proportions of chemical components and changes in their characteristic properties (DP, TCI) on the reduction in mechanical properties. The results of this research serve to better understand the behavior of black locust wood during thermal modification, which can primarily be used to increase its application use.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference51 articles.

1. Effect of Heat Treatment on the Change in Color and Dimensional Stability of Acacia Hybrid Wood;Tuong;BioResources,2010

2. Wood modification by heat treatment: A review;Esteves;BioResources,2009

3. Hill, C.A.S. (2006). Wood Modification: Chemical, Thermal, and Other Processes, John Eiley and Sons.

4. Jones, D., Sandberg, D., Goli, G., and Todaro, L. (2019). Wood Modifiaction in Euope a State-of-the-Art about Processes Products and Applications, Firenze University Press.

5. Improvement of Dimensional Stability of Acacia mangium Wood by Heat Treatment: A case Study of Vietnam;Tran;J. For. Sci.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3