Analysis of Chromatin Openness in Testicle Tissue of Yak and Cattle-Yak

Author:

Cao Mengli,Pei JieORCID,Xiong Lin,Guo Shaoke,Wang XingdongORCID,Kang YandongORCID,Guo XianORCID

Abstract

Cattle-yak, a crossbreed of yak and cattle, which can exhibit obvious heterosis and can adapt to the harsh environmental conditions of the Qinghai Tibet Plateau (QTP). However, F1 cattle-yak were found to be sterile because they were unable to produce sperm, which adversely restricted the fixation of heterosis. Many prior attempts have been made to decipher the mechanism underlying the spermatogenesis stagnation of cattle-yak. However, the open chromatin region (OCR) map of yak and cattle-yak testes has not been generated yet. Here, we have analyzed the OCRs landscape of testicular tissues of cattle-yak and yaks by performing ATAC-seq technology. The OCRs of cattle-yak and yak testes displayed similar genome distribution and showed priority in intergenic regions, introns and promoters. The pathway enrichment analysis indicated that the differential OCRs-related genes were involved in spermatogenesis, involving the cell cycle, as well as Hippo, mTOR, MAPK, Notch, and Wnt signaling pathways. The integration of ATAC-seq and mRNA-seq indicated that the majority of the gene expression levels were positively correlated with chromatin openness. At the same time, we have identified a number of transcription factors (TFs) related to spermatogenesis and the differential expression of these TFs may contribute to the spermatogenesis stagnation of the cattle-yak. Overall, the findings of this study provide valuable information for advancing the research related to yak crossbreeding improvement and sperm production stagnation of cattle-yak.

Funder

National Key Research and Development Program of China

China Agriculture Research System of MOF and MARA

Innovation Project of Chinese Academy of Agricultural Sciences

Gansu Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3