Analysis and Functional Verification of PlPM19L Gene Associated with Drought-Resistance in Paeonia lactiflora Pall.

Author:

Meng Jiasong,Guo Jinhui,Li Tingting,Chen Zijie,Li Miao,Zhao Daqiu,Tao Jun

Abstract

The herbaceous peony (Paeonia lactiflora Pall.) is widely cultivated as an ornamental, medicinal and edible plant in China. Drought stress can seriously affect the growth of herbaceous peony and reduce its quality. In our previous research, a significantly differentially expressed gene, PM19L, was obtained in herbaceous peony under drought stress based on transcriptome analysis, but little is known about its function. In this study, the first PM19L that was isolated in herbaceous peony was comprised of 910 bp, and was designated as PlPM19L (OP480984). It had a complete open reading frame of 537 bp and encoded a 178-amino acid protein with a molecular weight of 18.95 kDa, which was located in the membrane. When PlPM19L was transferred into tobacco, the transgenic plants had enhanced tolerance to drought stress, potentially due to the increase in the abscisic acid (ABA) content and the reduction in the level of hydrogen peroxide (H2O2). In addition, the enhanced ability to scavenge H2O2 under drought stress led to improvements in the enzyme activity and the potential photosynthetic capacity. These results combined suggest that PlPM19L is a key factor to conferring drought stress tolerance in herbaceous peony and provide a scientific theoretical basis for the following improvement in the drought resistance of herbaceous peony and other plants through genetic engineering technology.

Funder

National Natural Science Foundation of China

Jiangsu Forestry Science and Technology and Extension Project

Modern Agricultural Industrial Technology System in Jiangsu Province

Qing-Lan Project of Jiangsu Province

High-Level Talent Support Program of Yangzhou University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3