YTHDF2 as a Mediator in BDNF-Induced Proliferation of Porcine Follicular Granulosa Cells

Author:

Liu Kening1,Zhou Xu1,Li Chunjin1,Shen Caomeihui1,He Guitian1,Chen Tong1,Cao Maosheng1,Chen Xue1,Zhang Boqi1,Chen Lu1ORCID

Affiliation:

1. College of Animal Science, Jilin University, Changchun 130062, China

Abstract

In female mammals, the proliferation and apoptosis of granulosa cells (GCs) are critical in determining the fate of follicles and are influenced by various factors, including brain-derived neurotrophic factor (BDNF). Previous research has shown that BDNF primarily regulates GC proliferation through the PI3K/AKT, NF-kB, and CREB tumour pathways; however, the role of other molecular mechanisms in mediating BDNF-induced GC proliferation remains unclear. In this study, we investigated the involvement of the m6A reader YTH domain-containing family member 2 (YTHDF2) in BDNF-stimulated GC proliferation and its underlying mechanism. GCs were cultured in DMEM medium supplemented with varying BDNF concentrations (0, 10, 30, 75, and 150 ng/mL) for 24 h. The viability, number, and cell cycle of GCs were assessed using the CCK-8 assay, cell counting, and flow cytometry, respectively. Further exploration into YTHDF2’s role in BDNF-stimulated GC proliferation was conducted using RT-qPCR, Western blotting, and sequencing. Our findings indicate that YTHDF2 mediates the effect of BDNF on GC proliferation. Additionally, this study suggests for the first time that BDNF promotes YTHDF2 expression by increasing the phosphorylation level of the ERK1/2 signalling pathway. This study offers a new perspective and foundation for further elucidating the mechanism by which BDNF regulates GC proliferation.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Jilin Province

Outstanding Young Talents and Technology Innovation Project of Jilin Province

Key Research and Development Program of Changchun City

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Progress on the Role of M6A in Regulating Economic Traits in Livestock;International Journal of Molecular Sciences;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3