Author:
Qiao Rongrong,Dong Chunyuan,Ji Shuxin,Chang Xueli
Abstract
Sandy range land refers to a major component of grassland area types in the semi-arid area of northern China. Monitoring of vegetation and land surface temperature (LST) using remote sensing technology can help determine the degree of desertification in a regional and/or sub regional scale, as in the Horqin Sandy Land selected in this study. Correlation analysis was performed to examine the relationship between the fractional vegetation coverage (FVC) and the LST within one growing season (from May to August 2017), at different spatial scales. The results showed that the FVC increased from 0.12 in May to 0.29 in August, and the LST increased first and then declined. The highest LST was 41.68 °C in July, while the lowest was 28.62 °C in August. At the grid scale, the LST increased first and then declined with the increase of the FVC on 25 May, 10 June, and 29 August; the FVC ranged from 0.29–0.38, 0.27–0.32, and 0.29–0.38 with the preference of the ‘turning point’, respectively. A negative correlation was identified between the FVC and the LST and without any ‘turning point’ in the fitting curve on 28 July. The correlation between FVC and LST complied with the grid scale at the sample area scale. The coupling analysis of landscape pattern expressed by FVC and LST showed that, the landscape evenness, Euclidean nearest neighbor distance, and landscape splitting degree all showed strong coupling correlation in any study period (P). The landscape aggregation of FVC and LST showed a good coupling at the relatively high and low air temperature conditions of P1 and P3. Landscape contagion showed a good coupling between FVC and LST at relatively moderate air temperature condition of P1 and P4. Air temperature conditions and characteristics of vegetation coverage should be considered for a more targeted analysis when analyzing the relationship between FVC and LST and attention should be paid to the timing and type of study area in practical application.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献