Analysis of Short-Term Drought Episodes Using Sentinel-3 SLSTR Data under a Semi-Arid Climate in Lower Eastern Kenya

Author:

Musyimi Peter K.12ORCID,Sahbeni Ghada1ORCID,Timár Gábor1ORCID,Weidinger Tamás3ORCID,Székely Balázs1ORCID

Affiliation:

1. Department of Geophysics and Space Science, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary

2. Department of Humanities and Languages, Karatina University, Karatina P.O. Box 1957-10101, Kenya

3. Department of Meteorology, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary

Abstract

This study uses Sentinel-3 SLSTR data to analyze short-term drought events between 2019 and 2021. It investigates the crucial role of vegetation cover, land surface temperature, and water vapor amount associated with drought over Kenya’s lower eastern counties. Therefore, three essential climate variables (ECVs) of interest were derived, namely Land Surface Temperature (LST), Fractional Vegetation Cover (FVC), and Total Column Water Vapor (TCWV). These features were analyzed for four counties between the wettest and driest episodes in 2019 and 2021. The study showed that Makueni and Taita Taveta counties had the highest density of FVC values (60–80%) in April 2019 and 2021. Machakos and Kitui counties had the lowest FVC estimates of 0% to 20% in September for both periods and between 40% and 60% during wet seasons. As FVC is a crucial land parameter for sequestering carbon and detecting soil moisture and vegetation density losses, its variation is strongly related to drought magnitude. The land surface temperature has drastically changed over time, with Kitui and Taita Taveta counties having the highest estimates above 20 °C in 2019. A significant spatial variation of TCWV was observed across different counties, with values less than 26 mm in Machakos county during the dry season of 2019, while Kitui and Taita Taveta counties had the highest estimates, greater than 36 mm during the wet season in 2021. Land surface temperature variation is negatively proportional to vegetation density and soil moisture content, as non-vegetated areas are expected to have lower moisture content. Overall, Sentinel-3 SLSTR products provide an efficient and promising data source for short-term drought monitoring, especially in cases where in situ measurement data are scarce. ECVs-produced maps will assist decision-makers with a better understanding of short-term drought events as well as soil moisture loss episodes that influence agriculture under arid and semi-arid climates. Furthermore, Sentinel-3 data can be used to interpret hydrological, ecological, and environmental changes and their implications under different environmental conditions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3