Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection

Author:

Pinto Smitha Joyce1,Siano Pierluigi23ORCID,Parente Mimmo3ORCID

Affiliation:

1. Department of Electronics and Communication, MIT Mysore, Belawadi, Srirangapatna 571438, India

2. Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2092, South Africa

3. Dipartimento di Scienze Aziendali—Management & Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano, Italy

Abstract

In a physical microgrid system, equipment failures, manual misbehavior of equipment, and power quality can be affected by intentional cyberattacks, made more dangerous by the widespread use of established communication networks via sensors. This paper comprehensively reviews smart grid challenges on cyber-physical and cyber security systems, standard protocols, communication, and sensor technology. Existing supervised learning-based Machine Learning (ML) methods for identifying cyberattacks in smart grids mostly rely on instances of both normal and attack events for training. Additionally, for supervised learning to be effective, the training dataset must contain representative examples of various attack situations having different patterns, which is challenging. Therefore, we reviewed a novel Data Mining (DM) approach based on unsupervised rules for identifying False Data Injection Cyber Attacks (FDIA) in smart grids using Phasor Measurement Unit (PMU) data. The unsupervised algorithm is excellent for discovering unidentified assault events since it only uses examples of typical events to train the detection models. The datasets used in our study, which looked at some well-known unsupervised detection methods, helped us assess the performances of different methods. The performance comparison with popular unsupervised algorithms is better at finding attack events if compared with supervised and Deep Learning (DL) algorithms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3