Machine Learning-Based Fatigue Life Prediction of Functionally Graded Materials Using Material Extrusion Technology
Author:
Affiliation:
1. Department of Mechanical Engineering, Tennessee Tech University, Cookeville, TN 38505, USA
2. Department of Manufacturing and Engineering Technology, Tennessee Tech University, Cookeville, TN 38505, USA
Abstract
Funder
Center for Manufacturing Research
Department of Manufacturing and Engineering Technology
Publisher
MDPI AG
Subject
Engineering (miscellaneous),Ceramics and Composites
Link
https://www.mdpi.com/2504-477X/7/10/420/pdf
Reference29 articles.
1. Pradhan, K.K., and Chakraverty, S. (2019). Computational Structural Mechanics, Elsevier.
2. Dual-Wire Plasma Arc Additively Manufactured SS 316L-Inconel 625 Functionally Graded Material: Microstructure Evolution and Mechanical Properties;Yu;J. Mater. Eng. Perform.,2023
3. Ostolaza, M., Arrizubieta, J.I., Lamikiz, A., Plaza, S., and Ortega, N. (2023). Latest Developments to Manufacture Metal Matrix Composites and Functionally Graded Materials through AM: A State-of-the-Art Review. Materials, 16.
4. Load distribution in threads of porous metal–ceramic functionally graded composite joints subjected to thermomechanical loading;Zhou;Compos. Struct.,2015
5. Preparation and thermodynamic analysis of the porous ZrO2/(ZrO2 + Ni) functionally graded bolted joint;Zhou;Compos. Part B Eng.,2015
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning for Additive Manufacturing of Functionally Graded Materials;Materials;2024-07-25
2. Machine learning for fatigue lifetime predictions in 3D-printed polylactic acid biomaterials based on interpretable extreme gradient boosting model;Materials Today Communications;2024-06
3. Damage analysis of Functionally Graded Materials under strong cyclic loading;Mechanics of Advanced Materials and Structures;2024-04
4. Exploring the impact of phase-shifted loading conditions on fatigue life of S355J2 mild steel with different machine learning approaches;The International Journal of Advanced Manufacturing Technology;2024-03-12
5. Energy Efficiency in Additive Manufacturing: Condensed Review;Technologies;2024-02-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3