Energy Efficiency in Additive Manufacturing: Condensed Review

Author:

Fidan Ismail1ORCID,Naikwadi Vivekanand1ORCID,Alkunte Suhas2,Mishra Roshan3,Tantawi Khalid4ORCID

Affiliation:

1. Additive Manufacturing Research and Innovation Laboratory, Tennessee Tech University, Cookeville, TN 38505, USA

2. Department of Engineering Technology, Old Dominion University, Norfolk, VA 23529, USA

3. Department of Mechanical Engineering, University of Louisville, Louisville, KY 40208, USA

4. Department of Engineering Management and Technology, College of Engineering and Computer Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

Abstract

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly use these advancing technologies. This paper provides a holistic review of this important concept from the perspectives of process, materials science, industry, and initiatives. The goal of this research study is to collect and present the latest knowledge blocks related to the energy consumption of AM technologies from a number of recent technical resources. Overall, they are the collection of surveys, observations, experimentations, case studies, content analyses, and archival research studies. The study highlights the current trends and technologies associated with energy efficiency and their influence on the AM community.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3