Effects on Carbon Sources and Sinks from Conversion of Over-Mature Forest to Major Secondary Forests and Korean Pine Plantation in Northeast China

Author:

Wu BinORCID,Mu Changcheng,Zhao Jiaqi,Zhou Xuejiao,Zhang Junhui

Abstract

The effects of replacing over-mature forest with secondary forests and plantations are significant for terrestrial ecosystem carbon (C) dynamics. However, the carbon balance and recovery time of this replacement process remain unclear. This study measured the fluxes of CH4 and CO2 in soils and the annual net C sequestration (ANCS) from seven ecosystems with different vegetation types (over-mature forest (OMF), Korean pine plantation (KPP), hardwood forest (HWF), Betula platyphylla forest (BPF), Populous davidiana forest (PDF), mixed deciduous forest (MDF), and Mongolian oak forest (MOF)) using the static chamber-gas chromatography method and the relative growth equation method. We examined the effects of environmental factors (e.g., air and soil temperature, soil volumetric water content (SVWC), soil pH, nitrate nitrogen (NO3−-N), ammonium nitrogen (NH4+-N), and soil organic carbon (SOC)) on CH4 and CO2 fluxes at the Maoershan Ecosystem Research Station in Northeast China. The carbon source or sink of OMF, KPP, and five secondary forests (HWF, BPF, PDF, MDF, and MOF) were then evaluated based on net ecosystem C balance. The results revealed that the mean annual CH4 fluxes varied between −0.046 and −0.077 mg m−2 h−1. The mean annual absorption of CH4 in the secondary forests and OMF were respectively 1.09–1.67 times and 1.11 times higher than that of KPP (0.046 mg m−2 h−1, p < 0.05). The mean annual CO2 fluxes varied between 140.425 and 250.023 mg m−2 h−1. The CO2 fluxes in the secondary forests and KPP soils were respectively 1.33–1.78 times and 1.16 times higher than that of OMF (140.425 mg m−2 h−1, p < 0.05). The CH4 and CO2 fluxes were mainly influenced by air and soil temperature, SVWC, soil pH, NO3−-N, NH4+-N, and SOC in Northeast China. The ANCS of vegetation (3.41 ± 0.27 − 6.26 ± 0.75 t C ha−1 y−1) varied widely among different forest types: KPP had the largest ANCS (6.26 ± 0.75 t C ha−1 y−1, which was higher than secondary forests and OMF by 1.20–1.84 times and 1.46 times, respectively, p > 0.05). Carbon sources and sinks were significantly different among the seven types of vegetation: OMF and KPP were observed to be the greatest C sinks, and secondary forests were shown to be the weakest carbon sinks or net C sources in the study region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3