Assessing Vulnerability of Regional-Scale Aquifer-Aquitard Systems in East Gulf Coastal Plain of Alabama by Developing Groundwater Flow and Transport Models

Author:

Ponprasit Chaloemporn1,Zhang Yong1,Gu Xiufen2,Goodliffe Andrew M.1,Sun Hongguang3

Affiliation:

1. Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA

2. School of Mathematics and Information Science, Yantai University, Yantai 264005, China

3. Colleges of Mechanics and Materials, Hohai University, Nanjing 210098, China

Abstract

Groundwater vulnerability assessment helps subsurface water resources management by providing scientific information for decision-makers. Rigorous, quantitative assessment of groundwater vulnerability usually requires process-based approaches such as groundwater flow and transport modeling, which have seldom been used for large aquifer-aquitard systems due to limited data and high model uncertainty. To quantify the vulnerability of regional-scale aquifer-aquitard systems in the East Gulf Coastal Plain of Alabama, a three-dimensional (3D) steady-state groundwater flow model was developed using MODFLOW, after applying detailed hydrogeologic information to characterize seven main aquifers bounded by aquitards. The velocity field calibrated by observed groundwater heads was then applied to calculate groundwater age and residence time for this 3D aquifer-aquitard system via backward/forward particle tracking. Radioactive isotope data (14C and 36Cl) were used to calibrate the backward particle tracking model. Results showed that shallow groundwater (<300 ft below the groundwater table) in southern Alabama is mainly the Anthropocene age (25–75 years) and hence susceptible to surface contamination, while the deep aquifer-aquitard systems (700 ft or deeper below the groundwater table) contain “fossil” waters and may be safe from modern contamination if there is no artificial recharge/discharge. Variable horizontal and vertical vulnerability maps for southern Alabama aquifer-aquitard systems reflect hydrologic conditions and intermediate-scale aquifer-aquitard architectures in the regional-scale models. These large-scale flow/transport models with coarse resolutions reasonably characterize the broad distribution and vertical fluctuation of groundwater ages, probably due to aquifer-aquitard structures being captured reliably in the geology model. Parameter sensitivity analysis, vadose zone percolation time, wavelet analysis, and a preliminary extension to transient flow were also discussed to support the aquifer vulnerability assessment indexed by groundwater ages for southern Alabama.

Funder

Department of the Treasury

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3