Abstract
Background: This study aimed to reveal the efficacy of the artificial intelligence (AI)-assisted dental age (DA) assessment in identifying the characteristics of growth delay (GD) in children. Methods: The panoramic films matching the inclusion criteria were collected for the AI model training to establish the population-based DA standard. Subsequently, the DA of the validation dataset of the healthy children and the images of the GD children were assessed by both the conventional methods and the AI-assisted standards. The efficacy of all the studied modalities was compared by the paired sample t-test. Results: The AI-assisted standards can provide much more accurate chronological age (CA) predictions with mean errors of less than 0.05 years, while the traditional methods presented overestimated results in both genders. For the GD children, the convolutional neural network (CNN) revealed the delayed DA in GD children of both genders, while the machine learning models presented so only in the GD boys. Conclusion: The AI-assisted DA assessments help overcome the long-standing populational limitation observed in traditional methods. The image feature extraction of the CNN models provided the best efficacy to reveal the nature of delayed DA in GD children of both genders.
Funder
Kaohsiung Chang Gung Memorial Hospital
Linkou Chang Gung Memorial Hospital
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献