Can we predict orthodontic extraction patterns by using machine learning?

Author:

Leavitt Landon1,Volovic James1,Steinhauer Lily2,Mason Taylor1,Eckert George3,Dean Jeffrey A.4,Dundar M. Murat5,Turkkahraman Hakan1ORCID

Affiliation:

1. Department of Orthodontics and Oral Facial Genetics Indiana University School of Dentistry Indianapolis Indiana USA

2. Indiana University School of Dentistry Indianapolis Indiana USA

3. Department of Biostatistics and Health Data Science Indiana University School of Medicine Indianapolis Indiana USA

4. Department of Pediatric Dentistry Indiana University School of Dentistry Indianapolis Indiana USA

5. School of Science, Department of Computer & Information Science Indiana University Purdue University at Indianapolis Indianapolis Indiana USA

Abstract

AbstractObjectiveTo investigate the utility of machine learning (ML) in accurately predicting orthodontic extraction patterns in a heterogeneous population.Materials and MethodsThe material of this retrospective study consisted of records of 366 patients treated with orthodontic extractions. The dataset was randomly split into training (70%) and test sets (30%) and was stratified according to race/ethnicity and gender. Fifty‐five cephalometric and demographic input data were used to train and test multiple ML algorithms. The extraction patterns were labelled according to the previous treatment plan. Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM) algorithms were used to predict the patient's extraction patterns.ResultsThe highest class accuracy percentages were obtained for the upper and lower 1st premolars (U/L4s) (RF: 81.63%, LR: 63.27%, SVM: 63.27%) and upper 1st premolars only (U4s) extraction patterns (RF: 61.11%, LR: 72.22%, SVM: 72.22%). However, all methods revealed low class accuracy rates (<50%) for the upper 1st and lower 2nd premolars (U4/L5s), upper 2nd and lower 1st premolars (U5/L4s), and upper and lower 2nd premolars (U/L5s) extraction patterns. For the overall accuracy, RF yielded the highest percentage with 54.55%, followed by SVM with 52.73% and LR with 49.09%.ConclusionAll tested supervised ML techniques yielded good accuracy in predicting U/L4s and U4s extraction patterns. However, they predicted poorly for the U4/L5s, U5/L4s, and U/L5s extraction patterns. Molar relationship, mandibular crowding, and overjet were found to be the most predictive indicators for determining extraction patterns.

Publisher

Wiley

Subject

Otorhinolaryngology,Oral Surgery,Surgery,Orthodontics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3