Predicting the 2-Year Risk of Progression from Prediabetes to Diabetes Using Machine Learning among Chinese Elderly Adults

Author:

Liu QingORCID,Zhou Qing,He Yifeng,Zou Jingui,Guo Yan,Yan Yaqiong

Abstract

Identifying people with a high risk of developing diabetes among those with prediabetes may facilitate the implementation of a targeted lifestyle and pharmacological interventions. We aimed to establish machine learning models based on demographic and clinical characteristics to predict the risk of incident diabetes. We used data from the free medical examination service project for elderly people who were 65 years or older to develop logistic regression (LR), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost) machine learning models for the follow-up results of 2019 and 2020 and performed internal validation. The receiver operating characteristic (ROC), sensitivity, specificity, accuracy, and F1 score were used to select the model with better performance. The average annual progression rate to diabetes in prediabetic elderly people was 14.21%. Each model was trained using eight features and one outcome variable from 9607 prediabetic individuals, and the performance of the models was assessed in 2402 prediabetes patients. The predictive ability of four models in the first year was better than in the second year. The XGBoost model performed relatively efficiently (ROC: 0.6742 for 2019 and 0.6707 for 2020). We established and compared four machine learning models to predict the risk of progression from prediabetes to diabetes. Although there was little difference in the performance of the four models, the XGBoost model had a relatively good ROC value, which might perform well in future exploration in this field.

Funder

Wuhan Center for Disease Control and Prevention

Health Commission of Hubei Province

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Study of Machine Learning Techniques for Early Prediction of Diabetes;2023 IEEE Tenth International Conference on Communications and Networking (ComNet);2023-11-01

2. Early Diagnosis of Diabetes: A Comparison of Machine Learning Methods;International Journal of Online and Biomedical Engineering (iJOE);2023-10-25

3. A scoping review of artificial intelligence-based methods for diabetes risk prediction;npj Digital Medicine;2023-10-25

4. Will Absolute Risk Estimation for Time to Next Screen Work for an Asian Mammography Screening Population?;Cancers;2023-04-29

5. Multi-Class Classification of Metabolic Syndrome Group Using Gradient Boosting;2023 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON);2023-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3