Early Diagnosis of Diabetes: A Comparison of Machine Learning Methods

Author:

Salem Alzboon MowafaqORCID,Subhi Al-Batah MohammadORCID,Alqaraleh MuhyeeddinORCID,Abuashour AhmadORCID,Hamadah Bader Ahmad FuadORCID

Abstract

Detection and management of diabetes at an early stage is essential since it is rapidly becoming a global health crisis in many countries. Predictions of diabetes using machine learning algorithms have been promising. In this work, we use data collected from the Pima Indians to assess the performance of multiple machine-learning approaches to diabetes prediction. Ages, body mass indexes, and glucose levels for 768 patients are included in the data set. The methods evaluated are Logistic Regression, Decision Tree, Random Forest, k-Nearest Neighbors, Naive Bayes, Support Vector Machine, Gradient Boosting, and Neural Network. The findings indicate that the Logistic Regression and Neural Network models perform the best on most criteria when considering all classes together. The SVM, Random Forest, and Naive Bayes models also receive moderate to high scores, suggesting their strength as classification models. However, the kNN and Tree models show poorer scores on most criteria across all classes, making them less favorable choices for this dataset. The SGD, AdaBoost, and CN2 rule inducer models perform the poorest when comparing all models using a weighted average of class scores. The results of the study suggest that machine learning algorithms may help predict the onset of diabetes and for detecting the disease at an early stage.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3