A New Strategy for Improving the Accuracy of Aircraft Positioning Using DGPS Technique in Aerial Navigation

Author:

Krasuski KamilORCID,Popielarczyk DariuszORCID,Ciećko AdamORCID,Ćwiklak JanuszORCID

Abstract

In this paper a new mathematical algorithm is proposed to improve the accuracy of DGPS (Differential GPS) positioning using several GNSS (Global Navigation Satellites System) reference stations. The new mathematical algorithm is based on a weighting scheme for the following three criteria: weighting in function of baseline (vector) length, weighting in function of vector length error and weighting in function of the number of tracked GPS (Global Positioning System) satellites for a single baseline. The algorithm of the test method takes into account the linear combination of the weighting coefficients and relates the position errors determined for single baselines. The calculation uses a weighting scheme for three independent baselines denoted as (1A,2A,3A). The proposed research method makes it possible to determine the resultant position errors for ellipsoidal BLh coordinates of the aircraft and significantly improves the accuracy of DGPS positioning. The analysis and evaluation of the new research methodology was checked for data from two flight experiments carried out in Mielec and Dęblin. Based on the calculations performed, it was found that in the flight experiment in Mielec, due to the application of the new research methodology, DGPS positioning accuracy improved from 55 to 94% for all the BLh components. In turn, in the flight experiment in Dęblin, the accuracy of DGPS positioning improved by 63–91%. The study shows that the highest DGPS positioning accuracy is seen when using weighting criterion II, the inverse of the square of the vector length error.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference51 articles.

1. Methods of reduction of negative effects of exhaust emissions in airport area;Mrozik,2020

2. Performance based navigation and GNSS/EGNOS system capabilities—Enabler for better positioning and separation of aircraft and airport capacity improvements;Banaszek;Logistyka,2010

3. New Strategy for Improving the Accuracy of Aircraft Positioning Based on GPS SPP Solution

4. Network Code DGNSS Positioning for Faster L1–L5 GPS Ambiguity Initialization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3