Abstract
Land use change (LUC) can be affected by investment growth and planning policies under the context of regional economic cooperation and development. Previous studies on land use simulation mostly emphasized the effects of local socioeconomic factors and planning constraint areas that prevent land conversions. However, investment and national planning policies that trigger regional LUC were often ignored. This study aims to couple the economic theory-based Computable General Equilibrium of Land Use Change (CGELUC) model and the cellular automata-based Future Land Use Simulation (FLUS) model to incorporate macroscopic impacts of investment into land use simulation, while proposing an updated mechanism that integrates into the FLUS model to consider the local impacts of planning policies. Taking Myanmar as a case, the method was applied to project the land use patterns (LUPs) during 2017–2050 under three scenarios: baseline, fast, and harmonious development. Specifically, the simulated land use structure (LUS) in 2018 acquired by the CGELUC model was verified by the existing data, and the future LUSs under different scenarios were projected later. Simultaneously, the consistencies between the results simulated by the FLUS model and land use maps in 2013, 2015, and 2017 were represented by the kappa coefficient. The updated mechanism was applied to update the Probability-of-Occurrence (PoO) surfaces based on the planning railway networks and special economic zone. Lastly, the LUPs under different scenarios were projected based on the future LUSs and updated PoO surfaces. Results reveal that the validation accuracy reaches 96.87% for the simulated LUS, and satisfactory accuracies of the simulated LUPs are obtained (kappa coefficients > 0.83). The updated mechanism increases the mean PoO values of built-up land in areas affected by planning policies (increasing by 0.01 to 0.21), indicating the importance of the planning policies in simulation. The cultivated land and built-up land increase with investment increasing under all three scenarios. The harmonious development scenario, showing the least forest encroachment and the highest diversity of LUP, is the optimal approach to achieve land sustainability. This study highlights the impacts of investment and planning policies on future LUCs of Myanmar, and a dynamic simulation process is expected to minimize the uncertainties of the input data and model in the future work.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
National Key Research and Development Program of China
National Natural Science Foundation project of China
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献