Growth Simulations of Urban Underground Space with Ecological Constraints Using a Patch-Based Cellular Automaton

Author:

Wei Lingxiang12ORCID,Guo Dongjun1,Chen Zhilong1,Hu Yingying23,Wu Yanhua1,Ji Junyuan2

Affiliation:

1. Research Center for Underground Space, Army Engineering University of PLA, Nanjing 210007, China

2. School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China

3. College of Urban Rail Transit, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

The growth simulation of urban underground space (UUS) under the consideration of ecological constraints can effectively reveal the characteristics and trends of UUS changes, and provide a basis for planning the construction of sustainable and livable ecological cities. Therefore, this study considers urban ecological space as a constraint mechanism for UUS development and conducts a simulation study of the dynamic and complex UUS growth process, with a view toward guiding UUS planning under a long-term overall vision. In this study, a patch-based cellular automaton (CA) model is constructed to simulate the dynamic and complex growth process of UUS, subject to the ecological constraints generated by the agent-based land allocation optimization model. The spatial drivers of UUS growth simulation are determined based on the Random Forest (RF) algorithm. The results of the research case in Tianfu New District, Chengdu City, demonstrate that UUS expansion with ecological constraints exhibits sustainable characteristics. However, the growth rate of the UUS development scale is significantly lower when ecological constraints are present compared to when they are not. This study’s results contribute to urban management by finding a balance between UUS development and ecological space conservation, and providing theoretical support for rational UUS planning and decision making in the construction of low-carbon cities.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3