Abstract
In this work, the problem of the cooperative visual-based SLAM for the class of multi-UA systems that integrates a lead agent has been addressed. In these kinds of systems, a team of aerial robots flying in formation must follow a dynamic lead agent, which can be another aerial robot, vehicle or even a human. A fundamental problem that must be addressed for these kinds of systems has to do with the estimation of the states of the aerial robots as well as the state of the lead agent. In this work, the use of a cooperative visual-based SLAM approach is studied in order to solve the above problem. In this case, three different system configurations are proposed and investigated by means of an intensive nonlinear observability analysis. In addition, a high-level control scheme is proposed that allows to control the formation of the UAVs with respect to the lead agent. In this work, several theoretical results are obtained, together with an extensive set of computer simulations which are presented in order to numerically validate the proposal and to show that it can perform well under different circumstances (e.g., GPS-challenging environments). That is, the proposed method is able to operate robustly under many conditions providing a good position estimation of the aerial vehicles and the lead agent as well.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference52 articles.
1. Collaborative mapping of an earthquake-damaged building via ground and aerial robots
2. StructSLAM: Visual SLAM With Building Structure Lines
3. Computer Vision and Graphics: International Conference, ICCVG 2014, Warsaw, Poland, September 15–17 2014. Proceedings;Schmidt,2014
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献