Nonlinear Energy Evolution Characteristics of Diorite Examined by Triaxial Loading–Unloading and Acoustic Emission Tests

Author:

An XuexuORCID,Hu Zhiping,Zhang Liang,Liu Anlong,Zhang Yonghui,Li Fangtao

Abstract

Acoustic emission (AE) is often accompanied by the propagation of internal microcracks in loaded rock samples, and it essentially reflects microinstability phenomena driven by energy redistribution under stress. In this paper, loading and unloading tests were carried out to investigate the internal nonlinear damage evolution characteristics of diorite samples under different unloading confining-pressure rates. The nonlinear mechanical characteristics of the strain energy sequence of diorite were studied by applying nonlinear dynamics and basic chaos theory and MATLAB software. Moreover, the evolution characteristics of AE counts and AE energy of rock samples were investigated, and their microcrack-propagation modes were analyzed based on the RA–AF scatter distribution of AE and a two-dimensional Gaussian mixture model. Finally, according to the evolution characteristics of energy and AE, the nonlinear damage evolution mechanism of diorite under loading and unloading conditions was revealed. The results show that, before the loading and unloading peak strength, when the strain-energy-promotion coefficient, r, is equal to 1 or changes in the ranges of 1–3, 3–3.57, and ≥3.57, the strain-energy evolution of diorite presents the characteristics of supercritical stability, nonlinear stability, period-doubling stability, and chaos, respectively. Meanwhile, the greater the rate of the unloading confining pressure, the earlier the period-doubling bifurcation and chaotic mechanical behavior will occur. After loading and unloading peak strength, the sudden decrease of high-density AE counts and AE energy or the sudden transition of the strain-energy-promotion coefficient from >0 to <0 can be used as an important criterion for the complete failure of rock samples.

Funder

Joint fund project of water diversion from Hanjiang River to Weihe River

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3