Effect of Confining Pressure on the Macro- and Microscopic Mechanisms of Diorite under Triaxial Unloading Conditions

Author:

Duan Xiaoxiao1,Yang Dengke1,An Xuexu2ORCID

Affiliation:

1. School of Intelligent Science and Engineering, Xi’an Peihua University, Xi’an 710125, China

2. School of Architecture and Surveying Engineering, Shaanxi College of Communications Technology, Xi’an 710018, China

Abstract

In this study, the response mechanism between macro- and microscales of deep hard-rock diorite is investigated under loading and unloading conditions. Moreover, the statistical theory is combined with particle flow code simulations to establish a correlation between unloading rates observed in laboratory experiments and numerical simulations. Subsequent numerical tests under varying confining pressures are conducted to examine the macroscopic mechanical properties and the evolution of particle velocity, displacement, contact force chain failures, and microcracks in both axial and radial directions of the numerical rock samples during the loading and unloading phases. The findings indicate that the confining pressure strength curve displays an instantaneous fluctuation response during unloading, which intensifies with higher initial confining pressures. This suggests that rock sample damage progresses in multiple stages of expansion and penetration. The study also reveals that with increased initial confining pressure, there is a decrease in particle velocity along the unloading direction and an increase in particle displacement and the number of contact force chain failures, indicating more severe radial expansion of the rock sample. Furthermore, microcracks predominantly accumulate near the unloading surface, and their total number escalates with rising confining pressure, suggesting that higher confining pressures promote the development and expansion of internal microcracks.

Funder

Shaanxi Provincial Natural Science Foundation Project and Xi'an Peihua University Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3