Physicochemical Evaluation of L-Ascorbic Acid and Aloe vera-Containing Polymer Materials Designed as Dressings for Diabetic Foot Ulcers

Author:

Kędzierska Magdalena,Jamroży Mateusz,Kudłacik-Kramarczyk Sonia,Drabczyk Anna,Bańkosz Magdalena,Potemski Piotr,Tyliszczak BożenaORCID

Abstract

Hydrogels belong to the group of polymers that are more and more often considered as innovative dressing materials. It is important to develop materials showing the most advantageous properties from the application viewpoint wherein in the case of hydrogels, the type and the amount of the crosslinking agent strongly affect their properties. In this work, PVP-based hydrogels containing Aloe vera juice and L-ascorbic acid were obtained via UV-induced polymerization. Next, their surface morphology (via both optical, digital and scanning electron microscope), sorption capacity, tensile strength, and elongation were characterized. Their structure was analyzed via FT-IR spectroscopy wherein their impact on the simulated body liquids was verified via regular pH and temperature measurements of these liquids during hydrogels’ incubation. It was demonstrated that as the amount of the crosslinker increased, the polymer structure was more wrinkled. Next, hydrogels showed relatively smooth and only slightly rough surface, which was probably due to the fact that the modifiers filled also the outer pores of the materials. Hydrogels demonstrated buffering properties in all incubation media, wherein during the incubation the release of Aloe vera juice probably took place as evidenced by the decrease in the pH of the incubation media and the disappearance of the absorption band deriving from the polysaccharides included in the composition of this additive. Next, it was proved that as the amount of the crosslinker increased, hydrogels’ crosslinking density increased and thus their swelling ratio decreased. Hydrogels obtained using a crosslinking agent with higher average molecular weight showed higher swelling ability than the materials synthesized using crosslinker with lower average molecular weight. Moreover, as the amount of the crosslinking agent increased, the tensile strength of hydrogels as well as their percentage elongation also increased.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3