Author:
Mohd Kamal Nor Sorfia Alisha,Mohd Fuzi Siti Fatimah Zaharah,Mohd Ghazali Mohd Ifwat,Daniel Joe Dailin
Abstract
Introduction: Hydrogels have gained prominence in a variety of fourth industrial revolution applications, including three-dimensional (3D) printing. However, there are limitations to 3D manufacturing, such as deformities in the final product. This is a significant obstacle to adopting this technology in the pharmaceutical industry, as printed products may have insufficient mechanical properties and a high brittleness, making further processing of these dosage forms problematic. The objective of this study is to produce a new 3D bioink from a mixture of locally produced pectin-based material from durian rind waste and cellulose-based material (pectin/cellulose hydrogel)
and to partially characterize the bioink hydrogel. Methods: Four formulations of pectin/cellulose-based hydrogel (3:1, 3:2, 4:1, and 5:3 ratio of pectin/cellulose) from durian rind waste and carboxymethyl cellulose (CMC) powder, as well as cross-linking agents, were developed and evaluated using a rheometer to evaluate viscoelastic
properties, FTIR Spectroscopy to identify compounds, and thermogravimetric analysis (TGA) to evaluate thermal stability. Results: All bioink formulations exhibit outstanding shear-thinning behavior suitable for 3D printing. The viscosity of edible ink increases as the pectin/cellulose concentration increases. The formulation of 3:1 pectin/cellulose has greater heat resistance than others (highest thermal stability with 21.69% of residual
weight) and the lowest percentage of weight loss (76.18%). Conclusion: The study of a pectin/cellulose hydrogel mixture provides an attractive outcome for the creation of bioink due to the effective synthesis of 3D printing shapes that are both smooth and uniform.
Publisher
Universiti Putra Malaysia
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献