The Potential Risk of Electronic Waste Disposal into Aquatic Media: The Case of Personal Computer Motherboards

Author:

Kalamaras Georgios,Kloukinioti Maria,Antonopoulou Maria,Ntaikou IoannaORCID,Vlastos DimitrisORCID,Eleftherianos Antonios,Dailianis StefanosORCID

Abstract

Considering that electronic wastes (e-wastes) have been recently recognized as a potent environmental and human threat, the present study aimed to assess the potential risk of personal computer motherboards (PCMBs) leaching into aquatic media, following a real-life scenario. Specifically, PCMBs were submerged for 30 days in both distilled water (DW) and artificial seawater (ASW). Afterwards, PCMBs leachates were chemically characterized (i.e., total organic carbon, ions, and trace elements) and finally used (a) for culturing freshwater (Chlorococcum sp. and Scenedesmus rubescens) and saltwater (Dunaliella tertiolecta and Tisochrysis lutea) microalgae for 10 days (240 h), (b) as the exposure medium for mussel Mytilus galloprovincialis (96 h exposure), and (c) for performing the Cytokinesis Block Micronucleus (CBMN) assay in human lymphocytes cultures. According to the results, PCMBs could mediate both fresh- and marine algae growth rates over time, thus enhancing the cytotoxic, oxidative, and genotoxic effects in the hemocytes of mussels (in terms of lysosomal membrane impairment, lipid peroxidation, and NO content and micronuclei formation, respectively), as well as human lymphocytes (in terms of MN formation and CBPI values, respectively). The current findings clearly revealed that PCMBs leaching into the aquatic media could pose detrimental effects on both aquatic organisms and human cells.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Reference89 articles.

1. The sustainable development goals report 2016

2. The Lancet Commission on pollution and health

3. E-Waste. Volume I: Inventory Assessment Manual; Division of Technology, Industry, and Economics, International Environmental Technology Center, Osaka/Shiga, United Nations Environment Programhttps://wedocs.unep.org/handle/20.500.11822/7857

4. The Global E-Waste Monitor—2017;Baldé,2017

5. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3