Heterogeneous Photocatalytic Oxidation and Detoxification of Simulated Agricultural Wastewater Contaminated with Boscalid Fungicide Using g-C3N4 Catalyst

Author:

Antonopoulou Maria1,Tzamaria Anna1,Miserli Kleopatra2,Lykos Christos2ORCID,Konstantinou Ioannis23

Affiliation:

1. Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece

2. Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece

3. Institute of Environment and Sustainable Development, University Research and Innovation Center, GR-45110 Ioannina, Greece

Abstract

In the present study, the photocatalytic oxidation and detoxification of aqueous matrices contaminated with boscalid using g-C3N4 catalyst and UV-A light was investigated. The UV-A/g-C3N4 process was found to achieve higher than 83% removal of boscalid in both matrices, with h+ and O2•− being the main species. UHPLC-HRMS analysis allowed the identification of five TPs, while the main degradation pathways involved hydroxylation, cyclization, and dechlorination. Scenedesmus rubescens microalgae species was exposed to boscalid solutions and lake water spiked with the fungicide before the photocatalytic treatment and inhibition in the growth rate was observed. An increase in the toxicity was also observed during the first stages of the treatment. The results from the in silico study correlate with the observed evolution of ecotoxicity during the application of the process, as some of the identified TPs were found to be toxic or very toxic for aquatic organisms. However, prolonged application of the process can lead to detoxification. It was also observed that the g-C3N4 catalyst can retain its photochemical stability and activity after at least three cycles. However, a slight decrease in the activity was observed when repeated another two times. This study demonstrated that the suggested photocatalytic process can both decrease the harmful effects of boscalid as well as effectively lower its concentration in water.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3