The Bladder Is a Novel Target of Developmental Polychlorinated Biphenyl Exposure Linked to Increased Inflammatory Cells in the Bladder of Young Mice

Author:

Kennedy Conner L.,Spiegelhoff Audrey,Wang Kathy,Lavery Thomas,Nunez Alexandra,Manuel RobbieORCID,Hillers-Ziemer Lauren,Arendt Lisa M.,Stietz Kimberly P. Keil

Abstract

Bladder inflammation is associated with several lower urinary tract symptoms that greatly reduce quality of life, yet contributing factors are not completely understood. Environmental chemicals are plausible mediators of inflammatory reactions within the bladder. Here, we examine whether developmental exposure to polychlorinated biphenyls (PCBs) leads to changes in immune cells within the bladder of young mice. Female mice were exposed to an environmentally relevant mixture of PCBs through gestation and lactation, and bladders were collected from offspring at postnatal day (P) 28–31. We identify several dose- and sex-dependent PCB effects in the bladder. The lowest concentration of PCB (0.1 mg/kg/d) increased CD45+ hematolymphoid immune cells in both sexes. While PCBs had no effect on CD79b+ B cells or CD3+ T cells, PCBs (0.1 mg/kg/d) did increase F4/80+ macrophages particularly in female bladder. Collagen density was also examined to determine whether inflammatory events coincide with changes in the stromal extracellular matrix. PCBs (0.1 mg/kg/d) decreased collagen density in female bladder compared to control. PCBs also increased the number of cells undergoing cell division predominantly in male bladder. These results implicate perturbations to the immune system in relation to PCB effects on the bladder. Future study to define the underlying mechanisms could help understand how environmental factors can be risk factors for lower urinary tract symptoms.

Funder

National Institute of Environmental Health Sciences

National Institute of Diabetes and Digestive and Kidney Diseases

U.S. Environmental Protection Agency

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3