Polychlorinated Biphenyls (PCBs) Impact Prostatic Collagen Density and Bladder Volume in Young Adult Mice Exposed during in Utero and Lactational Development

Author:

Spiegelhoff Audrey1ORCID,Wang Kathy1,Ridlon Monica1,Lavery Thomas1,Kennedy Conner L.1,George Serena1,Stietz Kimberly P. Keil1ORCID

Affiliation:

1. Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Polychlorinated biphenyls (PCBs) are persistent organic pollutants linked to deleterious health outcomes, including voiding dysfunction in developmentally exposed mice. Changes in prostate volume and/or extracellular matrix composition are associated with voiding dysfunction in men and animal models. Whether PCB-induced changes in voiding function in male mice occur in part via alterations to the prostate or an alternate mechanism is unclear. Therefore, we tested whether developmental exposure to the MARBLES PCB mixture altered prostate morphology in young adult offspring. C57Bl/6J female mice were dosed daily with the MARBLES PCB mixture at 0, 0.1, 1 or 6 mg/kg/d for two weeks prior to mating and through gestation and lactation, offspring were collected at 6 weeks of age. Ventral prostate mass was decreased in the 1 mg/kg/d PCB group compared to other PCB groups. There were no PCB-induced changes in prostate smooth muscle thickness, apoptosis, proliferation, or testes mass. PCBs impacted the prostate extracellular matrix; anterior prostate collagen density was decreased in the 1 mg/kg/d PCB group compared to all other groups. Normalized bladder volume was increased in male and female offspring in the 6 mg/kg/d PCB group compared to control. No change in water consumption, bladder mass or bladder smooth muscle thickness accompanied changes in bladder volume. Urine and serum creatinine concentrations were elevated but only in male mice. Together, these results suggest that developmental exposure to PCBs can influence prostate wet weight and prostate/bladder morphology, but PCBs do not promote prostate enlargement. Whether these changes persist throughout adult life and how they contribute to voiding function in animal models and humans is of future interest.

Funder

National Institutes of Health NIEHS

Wisconsin O’Brien Center for Benign Urologic Research

Stanford O’Brien Urology Research Center

Iowa Superfund Research Program at The University of Iowa

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3