Knowledge Acquisition and Representation for High-Performance Building Design: A Review for Defining Requirements for Developing a Design Expert System

Author:

Choi Seung YeounORCID,Kim Sean HayORCID

Abstract

New functions and requirements of high performance building (HPB) being added and several regulations and certification conditions being reinforced steadily make it harder for designers to decide HPB designs alone. Although many designers wish to rely on HPB consultants for advice, not all projects can afford consultants. We expect that, in the near future, computer aids such as design expert systems can help designers by providing the role of HPB consultants. The effectiveness and success or failure of the solution offered by the expert system must be affected by the quality, systemic structure, resilience, and applicability of expert knowledge. This study aims to set the problem definition and category required for existing HPB designs, and to find the knowledge acquisition and representation methods that are the most suitable to the design expert system based on the literature review. The HPB design literature from the past 10 years revealed that the greatest features of knowledge acquisition and representation are the increasing proportion of computer-based data analytics using machine learning algorithms, whereas rules, frames, and cognitive maps that are derived from heuristics are conventional representation formalisms of traditional expert systems. Moreover, data analytics are applied to not only literally raw data from observations and measurement, but also discrete processed data as the results of simulations or composite rules in order to derive latent rule, hidden pattern, and trends. Furthermore, there is a clear trend that designers prefer the method that decision support tools propose a solution directly as optimizer does. This is due to the lack of resources and time for designers to execute performance evaluation and analysis of alternatives by themselves, even if they have sufficient experience on the HPB. However, because the risk and responsibility for the final design should be taken by designers solely, they are afraid of convenient black box decision making provided by machines. If the process of using the primary knowledge in which frame to reach the solution and how the solution is derived are transparently open to the designers, the solution made by the design expert system will be able to obtain more trust from designers. This transparent decision support process would comply with the requirement specified in a recent design study that designers prefer flexible design environments that give more creative control and freedom over design options, when compared to an automated optimization approach.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference109 articles.

1. Howbuildhttps://sketch.howbuild.com

2. HYPEREX—A generic expert system to assist architects in the design of routine building types

3. A Generative Expert System for the Design of Building Layouts;Flemming,1986

4. Knowledge Representation and Reasoninghttps://en.wikipedia.org/wiki/Knowledge_representation_and_reasoning

5. Trends in expert system development: A longitudinal content analysis of over thirty years of expert system case studies

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3