Deep Learning-Based Prognostics and Health Management Model for Pilot-Operated Cryogenic Safety Valves

Author:

Kim Minho1ORCID,Seong Hansaem2ORCID,Kim Dohyun1ORCID

Affiliation:

1. Department of Computer and Information Engineering, Catholic University of Pusan, Busan 46252, Republic of Korea

2. DH Controls Co., Ltd., Busan 46747, Republic of Korea

Abstract

This paper highlights the significance of safety and reliability in modern industries, particularly in sectors like petroleum and LNG, where safety valves play a critical role in ensuring system safety under extreme conditions. To enhance the reliability of these valves, this study aims to develop a deep learning-based prognostics and health management (PHM) model. Past empirical methods have limitations, driving the need for data-driven prediction models. The proposed model monitors safety valve performance, detects anomalies in real time, and prevents accidents caused by system failures. The research focuses on collecting sensor data, analyzing trends for lifespan prediction and normal operation, and integrating data for anomaly detection. This study compares related research and existing models, presents detailed results, and discusses future research directions. Ultimately, this research contributes to the safe operation and anomaly detection of pilot-operated cryogenic safety valves in industrial settings.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3