Artifacts’ Detection for MRI Non-Metallic Needles: Comparative Analysis for Artifact Evaluation Using K-Means and Manual Quantification

Author:

AL-Maatoq Marwah1ORCID,Fachet Melanie1ORCID,Rao Rajatha2,Hoeschen Christoph1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Information Technology, Institute for Medical Technology, Chair of Medical Systems Technology, Otto von Guericke University, 39106 Magdeburg, Germany

2. Data and Knowledge Engineering Group, Faculty of Computer Science, Institute of Technical and Operational Information Systems, Otto von Guericke University, 39106 Magdeburg, Germany

Abstract

Interventional biopsy needles need to be accurately localized to the target tissue during magnetic resonance imaging (MRI) interventions. In this context, severe susceptibility artifacts affect the visibility of structures in the MR images depending on the needle’s material composition. In particular, standard needles for the spinal cord made of nickel-titanium alloys (NiTi) generate massive susceptibility artifacts during MRI. Consequently, this does not allow the precise placement of the needle to the target. The aim was to prove that using a non-metallic material for the needle can significantly reduce the appearance of artifacts. Hence, this work used a new combination of non-metallic materials based on an enforced fiber bundle as an inner core with different outer hollow sheets to fabricate seven prototypes of interventional spinal needles to optimize their visualization in MRI scans. Susceptibility artifacts for the non-metallic needles were evaluated in MRI images by an automatic quantification based on a K-means algorithm and compared with manual quantification. The width and length of the artifacts were measured for each needle. The non-metallic needles showed significantly lower artifacts in comparison to the standard needle. K-means provided the capability for detecting needle artifacts in MRI images, facilitating qualitative and quantitative assessment of MRI artifacts.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference48 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3