Mixed Reality Biopsy Navigation System Utilizing Markerless Needle Tracking and Imaging Data Superimposition

Author:

Trojak Michał12ORCID,Stanuch Maciej2ORCID,Kurzyna Marcin3ORCID,Darocha Szymon3ORCID,Skalski Andrzej12ORCID

Affiliation:

1. Department of Measurement and Electronics, AGH University of Krakow, 30-059 Krakow, Poland

2. MedApp S.A., 30-150 Krakow, Poland

3. Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre, 05-400 Otwock, Poland

Abstract

Exact biopsy planning and careful execution of needle injection is crucial to ensure successful procedure completion as initially intended while minimizing the risk of complications. This study introduces a solution aimed at helping the operator navigate to precisely position the needle in a previously planned trajectory utilizing a mixed reality headset. A markerless needle tracking method was developed by integrating deep learning and deterministic computer vision techniques. The system is based on superimposing imaging data onto the patient’s body in order to directly perceive the anatomy and determine a path from the selected injection site to the target location. Four types of tests were conducted to assess the system’s performance: measuring the accuracy of needle pose estimation, determining the distance between injection sites and designated targets, evaluating the efficiency of material collection, and comparing procedure time and number of punctures required with and without the system. These tests, involving both phantoms and physician participation in the latter two, demonstrated the accuracy and usability of the proposed solution. The results showcased a significant improvement, with a reduction in number of punctures needed to reach the target location. The test was successfully completed on the first attempt in 70% of cases, as opposed to only 20% without the system. Additionally, there was a 53% reduction in procedure time, validating the effectiveness of the system.

Funder

Ministry of Science and Higher Education in Polan

National Centre for Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3