Abstract
The use of a variety of microorganisms for the degradation of chemicals is a green solution to the problem of environmental pollution. In this work, fungi–magnetic nanoparticles were studied as systems with the potential to be applied in environmental remediation and pest control in agriculture. High food demand puts significant pressure on increasing the use of herbicides, insecticides, fungicides, pesticides, and fertilizers. The global problem of water pollution also demands new remediation solutions. As a sustainable alternative to commercial chemical products, nanobiocomposites were obtained from the interaction between the fungus M. anisopliae and two different types of magnetic nanoparticles. Fourier transform infrared spectroscopy, optical and electron microscopy, and energy dispersive spectroscopy were used to study the interaction between the fungus and nanoparticles, and the morphology of individual components and the final nanobiocomposites. Analyses show that the nanobiocomposites kept the same morphology as that of the fungus in natura. Magnetic measurements attest the magnetic properties of the nanobiocomposites. In summary, these nanobiocomposites possess both fungal and nanoparticle properties, i.e., nanobiocomposites were obtained with magnetic properties that provide a low-cost approach benefiting the environment (nanobiocomposites are retrievable) with more efficiency than that of the application of the fungus in natura.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior: Fellowship funding
Conselho Nacional de Desenvolvimento Científico e Tecnológico: Project Funding and fellowship funding
Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná: Project Funding
Financiadora de Estudos e Projetos: Project Funding
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献