Affiliation:
1. School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
2. Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, China
Abstract
Catalysts play a critical role in producing most industrial chemicals and are essential to environmental remediation. Under the demands of sustainable development, environment protection, and cost-related factors, it has been suggested that catalysts are sufficiently separable and conveniently recyclable in the catalysis process. Magnetite (Fe3O4) nanomaterials provide a possible way to achieve this goal, due to their magnetism, chemical stability, low toxicity, economic viability, etc. Therefore, Fe3O4-based materials are emerging as an important solid support to load heterogeneous catalysts and immobilize homogeneous catalysts. Moreover, the addition of magnetic character to catalysts will not only make their recovery much easier but also possibly endow catalysts with desirable properties, such as magnetothermal conversion, Lewis acid, mimetic enzyme activity, and Fenton activity. The following review comprises a short survey of the most recent reports in the catalytic applications of Fe3O4-based magnetic materials. It contains seven sections, an introduction into the theme, applications of Fe3O4-based magnetic materials in environmental remediation, electrocatalysis, organic synthesis, catalytic synthesis of biodiesel, and cancer treatment, and conclusions about the reported research with perspectives for future developments. Elucidation of the functions and mechanisms of Fe3O4 nanoparticles (NPs) in these applications may benefit the acquisition of robust and affordable protocols, leading to catalysts with good catalytic activity and enhanced recoverability.
Funder
National Natural Science Foundation of China
Zhejiang Provincial Natural Science Foundation of China
Taizhou science and technology planning project
Subject
Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献