Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen

Author:

Pliss Evgenii M.ORCID,Soloviev Mikhail E.ORCID

Abstract

A quantum-chemical analysis of the effect of a constant magnetic field on radical formation in the processes of chain oxidation of organic compounds by molecular oxygen is presented. The calculation of the total electronic energies and thermodynamic functions of the compounds involved in the reactions was performed by the density functional method with the hybrid exchange-correlation functional of Becke, Lee, Yang and Parr DFT B3LYP/6-311G** using the NWChem software package. The effect of the magnetic field on the individual stages of chain oxidation is associated with the evolution of radical pairs. It is assumed that the dipole–dipole interaction in a radical pair is not averaged by the diffusion of radicals and should be taken into account. To a large extent, the magnetic field effect (MFE) value is influenced by the ratio between the relaxation time of the oscillatory-excited state in the radical pair (tvib) and the relaxation time of the inter-combination transitions (tst). Although the developed technique refers to liquid-phase reactions, it can be used to study the MFE for oxidation of biologically significant compounds in multiphase systems, such as micelles, liposomes and membranes.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Reference38 articles.

1. Introduction to Dynamic Spin Chemistry

2. Magneto-Biology and Medicine;Buchachenko,2014

3. Risk of defeats in the central nervous system during deep space missions

4. Biological effects of the hypomagnetic field: An analytical review of experiments and theories

5. Spin Polarisation and Magnetic Field Effects in Radical Reaction;Salikhov,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3