rDEER: A Modified DEER Sequence for Distance Measurements Using Shaped Pulses

Author:

Bahrenberg Thorsten,Yang Yin,Goldfarb DaniellaORCID,Feintuch Akiva

Abstract

The DEER (double electron-electron resonance, also called PELDOR) experiment, which probes the dipolar interaction between two spins and thus reveals distance information, is an important tool for structural studies. In recent years, shaped pump pulses have become a valuable addition to the DEER experiment. Shaped pulses offer an increased excitation bandwidth and the possibility to precisely adjust pulse parameters, which is beneficial especially for demanding biological samples. We have noticed that on our home built W-band spectrometer, the dead-time free 4-pulse DEER sequence with chirped pump pulses suffers from distortions at the end of the DEER trace. Although minor, these are crucial for Gd(III)-Gd(III) DEER where the modulation depth is on the order of a few percent. Here we present a modified DEER sequence—referred to as reversed DEER (rDEER)—that circumvents the coherence pathway which gives rise to the distortion. We compare the rDEER (with two chirped pump pulses) performance values to regular 4-pulse DEER with one monochromatic as well as two chirped pulses and investigate the source of the distortion. We demonstrate the applicability and effectivity of rDEER on three systems, ubiquitin labeled with Gd(III)-DOTA-maleimide (DOTA, 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid) or with Gd(III)-DO3A (DO3A, 1,4,7,10-Tetraazacyclododecane-1,4,7-triyl) triacetic acid) and the multidrug transporter MdfA, labeled with a Gd(III)-C2 tag, and report an increase in the signal-to-noise ratio in the range of 3 to 7 when comparing the rDEER with two chirped pump pulses to standard 4-pulse DEER.

Funder

Israel Science Foundation - National Natural Science Foundation of China

Minerva Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3