Triggered Functional Dynamics of AsLOV2 by Time‐Resolved Electron Paramagnetic Resonance at High Magnetic Fields

Author:

Maity Shiny1ORCID,Price Brad D.2ORCID,Wilson C. Blake23ORCID,Mukherjee Arnab4ORCID,Starck Matthieu5ORCID,Parker David5ORCID,Wilson Maxwell Z.6ORCID,Lovett Janet E.7ORCID,Han Songi1ORCID,Sherwin Mark S.2ORCID

Affiliation:

1. Dept. of Chemistry and Biochemistry Univ. of California Santa Barbara CA 93106 USA

2. Dept. of Physics Univ. of California Santa Barbara CA 93106 USA

3. Laboratory of Chemical Physics Nat. Institute of Diabetes and Digestive and Kidney Diseases, NIH Bethesda MD 20892-0520 USA

4. Dept. of Chemical Engineering Univ. of California Santa Barbara CA 93106 USA

5. Dept. of Chemistry Univ. of Durham Durham DH1 3LE UK

6. Dept. of Molecular, Cellular, and Developmental Biology Univ. of California Santa Barbara CA 93106 USA

7. School of Physics and Astronomy and the Biomedical Sciences Research Complex Univ. of St. Andrews St. Andrews KY16 9SS UK

Abstract

AbstractWe present time‐resolved Gd−Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter‐residue distances during a protein's mechanical cycle in the solution state. TiGGER makes use of Gd‐sTPATCN spin labels, whose favorable qualities include a spin‐7/2 EPR‐active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we determined that upon light activation, the C‐terminus and N‐terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER revealed that the light‐activated long‐range mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins.

Funder

National Science Foundation

Office of the President, University of California

Foundation for the National Institutes of Health

Royal Society

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3