Process-Gas-Influenced Anti-Site Disorder and Its Effects on Magnetic and Electronic Properties of Half-Metallic Sr2FeMoO6 Thin Films

Author:

Yadav Ekta1ORCID,Navale Ketan S.1,Prajapati Gulloo L.2ORCID,Mavani Krushna R.13ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology (IIT) Indore, Khandwa Road, Simrol 453552, India

2. Department of Physics, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India

3. Centre for Advanced Electronics, Indian Institute of Technology (IIT), Indore 453552, India

Abstract

Anti-site disorder, arising due to the similar size of Fe and Mo ions in Sr2FeMoO6 (SFMO) double perovskites, hampers spintronic applicability by deteriorating the magnetic response of this double perovskite system. A higher degree of anti-site disorder can also completely destroy the half-metallicity of the SFMO system. To study the effects of different process gas conditions on the anti-site disorder, we have prepared a series of SFMO thin films on SrTiO3 (001) single-crystal substrate using a pulsed laser deposition (PLD) technique. The films are grown either under vacuum or under N2/O2 partial gas pressures. The vacuum-grown SFMO film shows the maximum value of saturation magnetization (MS) and Curie temperature (TC), signaling the lowest anti-site disorder in this series. In other words, there is a long-range Fe/Mo-O-Mo/Fe ferrimagnetic exchange in the vacuum-grown thin film, thereby enhancing the magnetization. Further, all the SFMO films show a semiconducting state with a systematic increase in overall resistivity with the increased anti-site disorder. The electrical conduction mechanism is defined by the variable-range hopping model at low temperatures. Raman spectra show a weak Fano peak, suggesting the presence of electron–phonon coupling in SFMO thin films. These results show the significance of the process gas in causing anti-site disorder, tuning the degree of this disorder and therefore its influence on the structural, magnetic, electrical, and vibrational properties of SFMO thin films.

Funder

CSIR, New Delhi

DST

Discipline of Physics, IIT Indore

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3