Layered Organic Conductors Based on BEDT-TTF and Ho, Dy, Tb Chlorides

Author:

Flakina Alexandra M.,Zhilyaeva Elena I.ORCID,Shilov Gennady V.,Faraonov Maxim A.,Torunova Svetlana A.,Konarev Dmitri V.

Abstract

Molecular semiconductors with lanthanide ions have been synthesized based on BEDT-TTF and lanthanide chlorides: (BEDT-TTF)2[HoCl2(H2O)6]Cl2(H2O)2 (1, which contains a 4f holmium cation), and (BEDT-TTF)2LnCl4(H2O)n (Ln = Dy, Tb, Ho (2–4), which contain 4f anions of lanthanides). Conductivity and EPR measurements have been carried out along with the SQUID magnetometry, and the crystal structure has been established for 1. The structure of 1 is characterized by an alternation of organic radical cation layers composed of BEDT-TTF chains and inorganic layers consisting of chains of the [HoCl2(H2O)6]+ cations interlinked by chlorine anions and crystallization water molecules. The magnetic susceptibility of 1–3 determined mainly by lanthanide ions follows the Curie–Weiss law with the Weiss temperatures of −3, −3, −2 K for 1–3, respectively, indicating weak antiferromagnetic coupling between paramagnetic lanthanide ions. The signals attributed to the BEDT-TTF+· radical cations only are observed in the EPR spectra of 1–3, which makes it possible to study their magnetic behavior. There are two types of chains in the organic layers of 1: the chains composed of neutral molecules and those formed by BEDT-TTF+· radical cations. As a result, uniform 1D antiferromagnetic coupling of spins is observed in the BEDT-TTF+· chains with estimated exchange interaction J = −10 K. The study of dynamic magnetic properties of 1–3 shows that these compounds are not SMMs.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3