Functional Properties of Tetrameric Molecular Cells for Quantum Cellular Automata: A Quantum-Mechanical Treatment Extended to the Range of Arbitrary Coulomb Repulsion

Author:

Palii AndrewORCID,Aldoshin SergeyORCID,Tsukerblat BorisORCID

Abstract

We discuss the problem of electron transfer (ET) in mixed valence (MV) molecules that is at the core of molecular Quantum Cellular Automata (QCA) functioning. Theoretical modelling of tetrameric bi-electronic MV molecular square (prototype of basic QCA cell) is reported. The model involves interelectronic Coulomb repulsion, vibronic coupling and ET between the neighboring redox sites. Unlike the majority of previous studies in which molecular QCA have been analyzed only for particular case when the Coulomb repulsion energy significantly exceeds the ET energy, here we do not imply assumptions on the relative strength of these two interactions. Moreover, in the present work we go beyond the adiabatic semiclassical approximation often used in theoretical analysis of such systems in spite of the fact that this approximation ignores such an important phenomenon as quantum tunneling. By analyzing the electronic density distributions in the cells and the ell-cell response functions obtained from a quantum-mechanical solution of a complex multimode vibronic problem we have concluded that such key features of QCA cell as bistability and switchability can be achieved even under failure of the condition of strong Coulomb repulsion provided that the vibronic coupling is strong enough. We also show that the semiclassical description of the cell-cell response functions loses its accuracy in the region of strong non-linearity, while the quantum-mechanical approach provides correct results for this critically important region.

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3